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Abstract A new NBD-rhodamine dye (1) was developed as a
colorimetric and ratiometric fluorescent chemosensor for Hg2+

with good selectivity in aqueous ethanol solutions under neutral
to basic conditions. Sensor 1 showed absorption at 468 nm and
a weak emission at 529 nm (ϕF=0.063) in ethanol/aqueous tris
buffer (9:1, v/v) of pH 9.17 solution. Bathochromic shifts in
both absorption (492 nm) and fluorescence spectra (569 nm,
ϕF=0.129), respectively upon addition of 2 equiv. of Hg

2+ were
observed. The ring-opening reaction of the spirolactam form to
the corresponding xanthene form was not found. The interac-
tion of Hg2+ with chemosensor 1 resulted in the deprotonation
of the secondary amine conjugated to the NBD component so
that the electron-donating ability of the N atom was enhanced.
Deprotonation-ICT mechanism of secondary amines was sug-
gested for the ratiometric fluorescent chemosensing for Hg2+.

Keywords Chemosensor . Hg2+ . Ratiometric sensing .
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Introduction

Mercury is one of the most prevalent toxic metals in the
environment and gets to the body orally or dermally [1, 2].

The extreme toxicity of mercury and its derivates results from
its high affinity for thiol groups in proteins and enzymes,
leading to the dysfunction of cells and causing health prob-
lems [3, 4]. Therefore, exploration of selective and efficient
methods for the monitoring of mercury has emerged as a
significant goal in the area of chemical sensors in recent years.
Fluorogenic methods in conjunction with suitable probes have
become the preferable means for detecting trace amounts of
species such as metal ions because fluorimetry is rapidly
performed, is nondestructive, and is highly sensitive [5, 6].
The most reported fluorescent sensors display an increase or
decrease in the emission intensity upon binding to analytes of
interest.

As the change in fluorescence intensity is the only detec-
tion signal, factors such as instrumental efficiency, environ-
mental conditions, and the probe concentration can interfere
with the signal output. To eliminate these effects, a ratiometric
fluorescent measurement is desirable [7, 8]. This technique
uses the ratio of the fluorescent intensities at two different
wavelengths, and provides a built-in correction for environ-
mental effects, and stability under illumination, allowing pre-
cise and quantitative analysis and imaging even in complicat-
ed systems. Therefore, a sensor displaying a ratiometric re-
sponse for Hg2+ quantitative detection is required to reduce
the interference ascribed to deviations in detecting parameters
and microenvironments. Different approaches have been pro-
posed to realize ratiometric Hg2+ sensing and overcome the
emission quenching nature of Hg2+ [9–14]. Spirocyclic deriv-
atives of rhodamine are useful sensing platforms due to the
ring-opening process leading to “turn-on” fluorescence
change. A spirolactam ring exists in the “ring-closed” state
without cations and is completely nonfluorescent. Addition of
suitable cations leads to ring opening, which results in signif-
icant fluorescence enhancement. A fluorescence resonance
energy transfer (FRET) based ratiometric sensor for Hg2+

detection was successfully developed, in which a NBD
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derivative was covalently confined into a thin layer of silica
nanoparticles as the donor; and a spirolactam rhodamine
derivative (SRhB) was covalently linked onto the particle
surface as the mercury ion probe. The presence of Hg2+ can
trigger an efficient ring-opening reaction of the spirolactam
rhodamine, affording efficient FRET-based ratiometric detec-
tion for mercury ions in water [15, 16].

Fluorescent chemosensors that show a shift in emission
upon binding with analytes are particularly attractive because
they are not only capable of ratiometric sensing of analytes,
but also offer advantages over conventional monitoring of
fluorescence intensity at a single wavelength [17]. The inter-
nal charge transfer (ICT) mechanism is widely exploited for
ion sensing because of the advantages of spectral shifts and
quantitative detection [18, 19]. When a fluorophore contains
an electron-donating group (often an amino group) conjugat-
ing to a fluorophore, it undergoes ICT from the donor to the
fluorophore upon light excitation. If a cation promotes the
electron-donating character of the electron-donating group,
the absorption and fluorescence spectra should be red-
shifted. Conversely, if the electron-donating character of the
electron-donating group is reduced, blue shifts of both the
absorption and fluorescence spectra are expected. However,
the selective fluorogenic detection of mercury ions has always
been hard due to its closed-shell d10 electronic configurations
which cause them to be spectroscopically silent [20, 21].
Reports of the ratiometric fluorescence probes for Hg2+ based
on ICT are considerably limited.

Herein, we report a new receptor 1 (Scheme 1) based on a
nitrobenzoxadiazolyl (NBD) liked with a spirolactam rhoda-
mine derivative by diethylenetriamine. The NBD fluorophore
in 1 exhibited the intramolecular push−pull electronic effect,
possessing a condensed furazan ring (orange-red color) [22,
23]. Its absorption and fluorescent spectra are expected to
change, upon the interaction with analytes. This fluorophore
was selected on the basis of its optimal wavelength of
excitation/emission being compatible with currently available
spectrofluorometers and its minimal self-quenching and
photobleaching [24, 25]. The NBD - spirolactam rhodamine
dye shows high selectivity for Hg2+ over other possible com-
petitive cations based on deprotonation-ICT mechanisms in-
stead of ring-open mechanisms.

Experimental

Reagents and Apparatus

Deionized water (distilled) was used throughout the experi-
ment as solvents. All the chemicals of analytical grade for
syntheses were purchased from commercial suppliers and
were used without further purification. The stock solutions
of metal ions (5 mM) were prepared in deionized water from

their chloride salts of Cr3+, Fe3+, Co2+, Ni2+, Hg2+ and Cu2+

and nitrate salts of Pb2+, Cd2+, Ag+, Mn2+, Zn2+ and Hg2+ of
analytical grade. Stock solution of 1 (1 mM) was prepared in
acetonitrile. Tris–HCl buffer solutions were prepared using
proper amount of Tris and HCl under adjustment by a pH
meter. Ethanol and 2 mM tris–HCl buffer aqueous solutions
with certain volume ratio are mixed for pH investigation and
sensing experiments.

1H NMR and 13C NMR spectra of 1 were recorded with a
400 MHz Varian spectrometer. Electrospray ionization mass
spectra (ESI-MS) were measured on a micrOTOF-Q II sys-
tem. Elemental analyses were carried on a Flash EA 1112
elemental analyzer. Absorption spectra were obtained on a
TU1901 Ultraviolet–visible spectrophotometer. The fluores-
cence spectra were measured with a Cary Eclipse fluorescence
spectrometer. For fluorescence quantum yield (ϕF) measure-
ments, the absorbances at the excitation wavelengths were
kept below 0.1. Quinine sulphate (ϕF =0.55) in 0.1 M
sulphuric acid [26] was used as standards. The pH values
were measured with a pH S-3C pH meter.

Syntheses

As shown in Scheme 1, compound 1 was synthesized similar
to the published procedure by reacting compound 2 with 4-
chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl) in dichloro-
methane [27].

Synthesis of 2

Compound 2 was prepared similar to the reported procedures
by using rhodamine B and diethylenetriamine as starting
materials [28]. Diethylenetriamine (5ml, 47mmol) was added
into rhodamine B (1.245 g, 2.6 mmol)in 30 ml absolute
ethanol. The mixture was refluxed for 20 h. The reaction
mixture was allowed to cool to room temperature and the
solvent was removed using a rotary evaporator. CH2Cl2
(100 ml) and H2O (100 ml) were added to the residue. The
organic layer was washed with H2O (50 ml) twice and dried
over anhydrous Na2SO4 and filtered. The solvent was re-
moved under reduced pressure. 2 (1.22 g, 89%) was collected
as a light brown solid. Mp: 156–157 °C. Anal. Calcd. for
C32H41N5O2: C, 72.83; H, 7.83; N, 13.27. Found: C, 72.60;
H, 7.89; N, 13.17 %.

Synthesis of 1

Compound 2 (0.42 g, 0.78 mmol) was dissolved in 20 ml
CH2Cl2, followed by addition of NBD-Cl (0.158 g,
0.79 mmol) and 5 drops of NEt3. The mixture was stirred
for 12 h at room temperature. The solvent was removed
under reduced pressure. And the residue was purified by
silica gel column chromatography using ethyl acetate:
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petroleum ether = 1:1 as the eluents to afford the product.
Yield: 347 mg (74 %). Mp: 194–195 °C. 1H NMR
(CDCl3, δ, ppm), 8.48 (d, J= 8.4 Hz, 1H), 8.01–7.99
(m, 1H), 7.53–7.47 (m, 2H), 7.13–7.11 (m, 1H), 6.46
(d, J= 8.8 Hz, 2H), 6.39 (d, J= 2.4 Hz, 2H), 6.29–6.26
(m, 2H), 6.12 (s, 1H), 3.41 (s, br, 2H), 3.36–3.31 (m, 12H),
2.96 (t, J= 5.6 Hz, 2H), 2.43 (t, J =5.2 Hz, 2H), 1.17
(t, J= 7.2 Hz, 12H) (Fig. S1, Supplementary material).
13C NMR (CDCl3, δ, ppm) 169.26, 153.39, 148.87,
144.25, 136.51, 132.69, 130.99, 128.72, 128.28,
123.84, 123.01, 108.11, 105.45, 97.72, 65.25, 47.58,
44.36, 39.32, 12.57 (Fig. S2, Supplementary material).
EI-ms for C38H42N8O5: 690.33, found: [M+1]+: 691.3,
[M+Na]+: 713.2 (Fig. S3, Supplementary material).
Anal. Calcd. for C38H42N8O5: C, 66.07; H, 6.13; N,
16.22. Found: C, 65.77; H, 6.17; N, 16.13.

Results and Discussion

Syntheses

Compound 2 was synthesized through condensation of
diethylenetriamine with rhodamine-B in ethanol. Compound
1 was prepared by the aliphatic nucleophilic substitution
reaction of 2 with NBD-Cl in high yield (Scheme 1). It was
characterized by 1H, 13C NMR and ESI-MS spectroscopies.
The characteristic peak of the spiro-carbon of 1 near 65.3 ppm
in the 13C NMR spectrum indicates that 1 is predominantly in
the form of spirolactam [29]. The nitrogens in the
diethylenetriamine linker and the carbonyl oxygen can pro-
vide binding unit for Hg2+. The Hg2+ binding may affect ICT
of the NBD component or ring-opening reaction of the
spirolactam form and convert the ligand to the corresponding
xanthene form, and consequently induce different spectral
change.

The Effect of pH on the Performance of Probe 1

The pH value of the environment around the fluorescent probe
usually shows an effect on its performance toward target metal
ions due to the protonation or deprotonation reaction of the
fluorophore and the hydrolysis reaction of the metal ions. The
fluorescence of 1 at 529 nm upon excitation at 468 nm
changed little between pH 10 and 7, and then gradually

increased from pH 7 to 2.6. Its pKa value was 3.5 by
sigmoidal fitting (Fig. 1). Below pH 2.6, a shoulder at
580 nm appears due to the ring opened process of the
spirolactam of rhodamine component in 1 by H+ (Fig. S4,
Supplementary material). Typically 1 is fluorescent show-
ing an emission band at 523 nm with a fluorescence
quantum yield of ϕF=0.302 at pH=2.60. When pH was
increased, a drastic quenching of fluorescence and a
bathochromic shift were observed; in particular, the emis-
sion band moves to 527 nm (ϕF=0.075) at pH=6.92 and
to 532 nm (ϕF=0.056) at pH=10.13. This is the typical
behavior of chemosensors based on a photo-induced elec-
tron transfer (PET) mechanism of the NBD component
[30]. The absorption spectra of 1 on variation in pH in
acidic solutions showed only small changes in their λmax

values with ~15 nm hypsochromic shift. The 468 nm
absorption band showed larger changes in absorbance in
acidic solutions than in basic solutions. The absorbance
gradually increased with increasing the pH from 2.6 to
7.0, and then became almost constant between pH 7.0 and
9.17. At pH 11.11, there was a large change in the
absorption shape and band (Fig. S5, Supplementary material).
The effects of pH on the deprotonation of 1 induced by Hg2+

were investigated by means of the absorption and fluores-
cence measurements. As the high concentration of Hg2+ might
cause precipitation of HgO in the alkaline condition, so these
experiments were carried out at a pH range from 2.60 to 11.11,
with the concentration of 1 fixed at 20μM and of Hg2+ at
24μM, respectively. In the presence of Hg2+, the absorbance

ON N

OH

O

ON N

N

O

N
H

N
O

N
NO2

Cl

H2N

H
N

NH2

NH2

ON N

N

O

N
H

H
N

N

O

N

NO2

12

EtOH, reflux
CH2Cl2, NEt3, RT

Scheme 1 The synthesis route of 1

2 4 6 8 10 12
0

100

200

300

400

500

600

F
lu

or
es

ce
nc

e 
In

te
ns

ity
 a

t 5
29

 n
m

pH

Fig. 1 Influence of pH on the fluorescence intensity at 529 nm of 1
(20μM) in ethanol–H2O (9:1, v/v). Excitation wavelength is 468 nm. Ex
slit was set at 5 nm. Em slit was set at 10 nm
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of 1 at 468 nm steadily increased from pH 2.6 to 3.92 and a
longer absorption band at 492 nm developed on increasing the
pH of the solution. The absorption at 468 nm reached its
limiting value between pH 3.92 and 7.27. Then it began to
decrease at pH >7.27. The absorbance of 1 at 492 nm in-
creased with the increasing of pH all the time (Fig. 2a). The
absorption spectra in presence of HgCl2 changed greatly at
pH 7~10 (Fig. S6). This response may be due to the com-
plexation of the deprotonated N− with Hg2+.

Due to the protonation of compound 1 , its binding capa-
bility with the metal ions is very low in acidic environments.
But in the neutral and basic conditions with the increase of pH,
the fluorescence peaks are red-shifted gradually with a slight
increase in intensity in presence of HgCl2 (Fig. 2b and Fig. S7,
Supplementary material). The ratio of the fluorescence

intensity (I569/I529) is very low (<0.6) and maintains constant
at pH<5 before and after addition of Hg2+. In a wide physi-
ological range of pH from 5.0 to 10.13, I569/I529 increases
gradually in the presence of Hg2+. At pH 10.13, the emission
intensity ratio reaches its maximum value of 3.12 (Fig. S8,
Supplementary material). Sensors based on electron donor/
acceptor are usually disturbed by proton in the detection of
metal ions. Taking into consideration the sensitivity and pos-
sibility of precipitation of HgO, a Tris–HCl buffer solution at
pH 9.17 was chosen as optimum experimental condition in
sensing of HgCl2.

UV–vis Titration Investigation

The UV–vis spectrum of 1 showed the absorption maximum
at 468 nm and a π-π* transition at 320 nm in ethanol/aqueous
tris buffer (9:1, v/v) of pH 9.17. The lower energy absorption
band is attributed to the intramolecular charge transfer transi-
tion [31, 32] from the donor N atom of 1 to the acceptor nitro-
group of the NBD moiety. Upon addition of Hg2+, the absor-
bance at 468 nm decreased gradually and was red-shifted until
a new absorption peak at 492 nm appeared and increased with
an obvious absorption shoulder at 530 nm. Meanwhile, the
absorption band at 320 nm decreased and a new peak at
370 nm appeared and increased. Three isosbetic points at
343 nm, 407 nm and 476 nm appeared in the UV–vis spectra
(Fig. 3a). Therefore, upon mercury binding there was a 24 nm
red-shift in the visible absorption spectral region. The pale
yellow solution of 1 in ethanol/aqueous tris buffer (9:1, v/v) of
pH 9.17 turned to a red color on addition of Hg2+. Similar
absorption spectral responses of 1 to HgCl2 can also be found
in neutral conditions without any buffer solutions (Figs. S9,
Supplementary material). These characteristics illustrated
the transformation from free 1 to the 1 -Hg2+ complexes.
However, there were no absorption peaks at around
560 nm, which indicated that the spirolactam rhodamine
component was not ring-opened by the interaction of Hg2+.
The curve established by plotting the ratio of the absor-
bance at 492 nm and 468 nm (A492/A468) versus mercury
ion concentration is shown in Fig. 3b. The absorbance
ratio A 492/A 468 increased linearly with the increasing of
the Hg2+ concentration in the range of 8×10−7~8×10−6 mol/L
(insert in Fig. 3b). Then the ratio increased slightly with the
increase of the concentration of Hg2+. The relationship
between the ratio of the absorbance and Hg2+ concentra-
tion was: A492/A468=3.90×10

5C +0.6715, with a correla-
tion coefficient of R =0.992, where C was the concentra-
tion of Hg2+ in mol/L. The detection limit, based on the
definition by IUPAC was found to be 2.4×10−7 mol/L
from 11 blank solutions. In order to be confirmed with the
reversible nature of the complexation, absorption spectra
of the mercury complexes of 1 in ethanol/aqueous tris
buffer (9:1, v/v) of pH 9.17 were observed upon addition
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Fig. 2 a Dependence of the absorbance at 468 nm (white square) and
492 nm (red circle) on pH for a solution of 1 (20μM) in the presence of
Hg2+ (24μM) in ethanol–H2O (9:1, v/v). b Dependence of the fluores-
cence intensity of the band centered at 529 nm (white triangle) and
569 nm (red diamond) on pH for a solution of 1 (20μM) in the presence
of Hg2+ (24μM) in ethanol–H2O (9:1, v/v). Excitation wavelength is
468 nm. Ex slit was set at 5 nm. Em slit was set at 10 nm
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of EDTA. Addition of EDTA resulted in the reverse
change in the absorption spectra (Fig. S10, Supplementary
material), indicating of a reversible coordination between
1 and Hg2+.

Fluorescence Titration Investigation

The fluorescence changes of 1 upon gradual addition of
HgCl2 in ethanol/aqueous tris buffer (9:1, v/v) of pH 9.17
were measured. When excited at its excitation maximum of
468 nm, 1 showed one characteristic fluorescence band cen-
tered at 529 nm, which is the typical fluorescence of the NBD
fluorophore. HgCl2 titration demonstrated an obvious emis-
sion decrease of the band centered at 529 nm (ϕF=0.063),
with a 40 nm red-shifted to 569 nm. The fluorescence intensity
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at 569 nm was gradually increased with the titration of
HgCl2 (Fig. 4a). The fluorescence quantum yield of 0.129
(2-fold in ϕF) at 569 nm when the concentration of HgCl2
was 4×10−5 M. An isoemission point appears at near
546 nm at low concentration of HgCl2 (0~10 μM), and
another isoemission point appears at near 538 nm at high
concentration of HgCl2. Figure 4b shows the dependence
of emission intensity ratios at 569 and 529 nm (I569/I529)
on the concentration of Hg2+. The emission intensity ratios
I569 /I529 changed from 0.78 to 2.34 when 2 equivalents of
Hg2+ were added. I569/I529 increased linearly with increas-
ing of the Hg2+ concentration in the range of 4.4×10−7~
1.32×10−5 mol/L (inset in Fig. 4b). Then the ratio increased
slightly with the increase in the concentration of Hg2+. The
relationship between I569/I529 and Hg2+ concentration was:
I 569/I529=0.6386+64991CHg

2+ (R =0.9975). The detection
limit obtained for Hg2+, estimated by 3σ/k (where σ is the
standard deviation of 11measurements of the blank and k is the
slope of the calibration line) was 2.3×10−7 mol/L [33, 34]. The
fluorescence response of 1 to HgCl2 can also be found in
neutral conditions (Figs. S9 and S11, Supplementary material).

Job’s plot analysis of the fluorescence titrations with a
total concentration of 4×10−5 M at 569 nm revealed a
maximum at about 0.5 mole fraction (Fig. 5), indicating
1:1 binding stoichiometry. The association constant was

calculated to be 1.15× 105 M−1 according to the UV–vis
titration profile (Figure S12, Supplementary material).

Possible Mechanism

The red shifts in both emission and absorption maxima of
probe 1 after bindingwith Hg2+ ions can be explained in terms
of the possible ICT mechanism [31, 32, 35]. The strong
electron-withdrawing effect of the nitrobenzoxadiazolyl
(NBD) fluorophore would greatly decrease the electron den-
sity on the nitrogen on the ethylenediamine linker, resulting in
easier deprotonation of the N-H. The capture of Hg2+ ion by 1
is proposed to result in the deprotonation of -NH- conjugated
to NBD so that the electron–donating ability of the N atom
would be enhanced. As a consequence of this interaction the
emission intensity at 569 nm gradually increases. The proposed
binding mechanism of Hg2+ with 1 was shown in Scheme 2.
The interaction between Hg2+ and carbonyl oxygen of the
rhodamine component in 1 was possibly too weak to be able
to induce the ring-opening reaction of the spirolactam form and
convert the ligand to the corresponding xanthene form, possi-
bly due to the less strain of a seven-member ring formation in
this than a usual five or six member ring formation [36].

ESI mass spectra provide evidence of the formation of a 1:1
1 –Hg2+ complex in 50 % CH3CN/CH2Cl2 solution
(Fig. S13). The peak at m/z=902.3 (calcd. 902.3), correspond-
ing to [(1 -H) + Hg + CH3CN - NO] +, is observed when
HgCl2 (36 μmol) is added to 1 (30 μmol), whereas free 1
exhibits a peak at m/z=691.3, which corresponds to [1+H]+

(Fig. S3 in Supplementary data). As the usual coordination
number of Hg (II) is four, anion Cl− may be the counteranion
of 1 -Hg2+, as indicated in Scheme 2. Ratiometric fluorescent
Zn2+ and Cu2+ chemosensors based on deprotonation of
secondary amines were reported in the literatures [36–39].
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The variation of the two fluorescence intensities affords the
system a ratiometric sensor for mercury ions in aqueous
ethanol solutions under neutral to basic conditions; and such
a ratiometric sensing system for Hg2+ ions possesses two
advantages, one is a large wavelength shift (100 nm) between
the excitation peak and emission peak, which eliminates the
influence of excitation backscattering effects on the fluores-
cence assay; the other is the presence of two well-resolved
emission peaks with comparable fluorescence intensities,
which ensures high resolution for the ratiometric sensing.

Selectivity Investigation

The fluorescence responses of probe 1 to various cations in
ethanol/aqueous tris buffer (9:1, v/v) of pH 9.17 and its
selectivity for Hg2+ are explored. The concentration of Hg2+

was fixed at 2×10−5 mol L−1. The fluorescence spectrum of
probe 1 was bathochromically shifted with increased intensity
in the presence of Hg2+. However, the fluorescence intensity
and maxima of probe 1 remained unchanged upon addition of
other cations (Fig. S14, Supplementary material). I569/I529
was significantly enhanced upon the addition of Hg2+ (purple
bars in Fig. 6). However, the addition of other cations did not
affect I569/I529 of the fluorescent probe 1 . In order to further
test the interference for other cations on the determination of
Hg2+, a competition experiment was performed in which the
fluorescent probe was added to a solution of Hg2+ in the
presence of other metal ions (red bars in Fig. 6). The compe-
tition experiments show slight variation in the emission inten-
sity ratio (I569/I529) except Cr

3+ and Fe3+. Thus, probe 1
exhibits a good selectivity for Hg2+ over the tested metal ions
except Cr3+ and Fe3+. Additionally, to explore the effects of
anionic counterions on the sensing behavior of 1 to metal
ions, absorption responses of 1 to mercury nitrate were
examined (Fig. S15, Supplementary material). The results
were similar to that shown in Fig. 3. There were no
obvious changes in the absorption responses of 1 to HgCl2,
and Hg(NO3)2. Color changes of compound 1 upon addi-
tion of 2 equivalents of Hg2+ were obviously different from
no addition or addition of other ions (Fig. 7). The color
change from yellow to red of 1 facilitated naked-eye rec-
ognition of Hg2+ under neutral to basic conditions.

Conclusions

In summary, a new probe based on a nitrobenzoxadiazolyl
(NBD) liked with a spirolactam rhodamine derivative by
diethylenetriamine was reported. It exhibits good selectivity
with ratiometric response for Hg2+ in aqueous ethanol solu-
tions under neutral to basic conditions based on deprotonation
of -NH- conjugated to NBD process and ICT mechanism. It
shows nanomolar affinity and shows large fluorescent shifts

and enhancement. The colorimetric response with a large red-
shift emission was useful for the easy detection of Hg2+.
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